On Fisher Information Inequalities and Score Functions in Non-invertible Linear Systems
نویسنده
چکیده
In this note, we review score functions properties and discuss inequalities on the Fisher Information Matrix of a random vector subjected to linear non-invertible transformations. We give alternate derivations of results previously published in [6] and provide new interpretations of the cases of equality.
منابع مشابه
Matrix Fisher inequalities for non-invertible linear systems
The Fisher informatin matrix IX of a random vector X appears as useful information theoretic tool to describe the proppagation of information through systems. For instance, it is directly involved in the derivation of the Entropy Power Inequality (EPI), that describes the evolution of the entropy of random variables (vectors) submitted to linear transformations. The first results about informat...
متن کاملSemiparametric regression estimation using noisy nonlinear non invertible functions of the observations
We investigate a semiparametric regression model where one gets noisy non linear non invertible functions of the observations. We focus on the application to bearings-only tracking. We first investigate the least squares estimator and prove its consistency and asymptotic normality under mild assumptions. We study the semiparametric likelihood process and prove local asymptotic normality of the ...
متن کاملLinear optimization on Hamacher-fuzzy relational inequalities
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Hamacher family of t-norms is considered as fuzzy composition. Hamacher family of t-norms is a parametric family of continuous strict t-norms, whose members are decreasing functions of ...
متن کاملSOME REMARKS ON WEAKLY INVERTIBLE FUNCTIONS IN THE UNIT BALL AND POLYDISK
We will present an approach to deal with a problem of existence of (not) weakly invertible functions in various spaces of analytic functions in the unit ball and polydisk based on estimates for integral operators acting between functional classes of different dimensions.
متن کاملOn Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives
In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.
متن کامل